Fish recognition based on the combination between robust feature selection, image segmentation and geometrical parameter techniques using Artificial Neural Network and Decision Tree

نویسندگان

  • Mutasem Khalil Sari Alsmadi
  • Khairuddin Bin Omar
  • Shahrul Azman Mohd. Noah
  • Ibrahim Almarashdah
چکیده

-We presents in this paper a novel fish classification methodology based on a combination between robust feature selection ,image segmentation and geometrical parameter techniques using Artificial Neural Network and Decision Tree. Unlike existing works for fish classification, which propose descriptors and do not analyze their individual impacts in the whole classification task and do not make the combination between the feature selection, image segmentation and geometrical parameter, we propose a general set of features extraction using robust feature selection, image segmentation and geometrical parameter and their correspondent weights that should be used as a priori information by the classifier. In this sense, instead of studying techniques for improving the classifiers structure itself, we consider it as a "black box" and focus our research in the determination of which input information must bring a robust fish discrimination. The study area selected for our proposed method from global information system (GIS) on Fishes (fish-base) and department of fisheries Malaysia ministry of agricultural and Agro-based industry in putrajaya, Malaysia region currently, the database contains 1513 of fish images. Data acquired on 22th August, 2008, is used. The classification problem involved the identification of 1513 types of image fishes; family ,Scientific Name , English name , local name, Habitat , poison fish and nonpoison .The main contribution of this paper is enhancement recognize and classify fishes based on digital image and To develop and implement a novel fish recognition prototype using global feature extraction, image segmentation and geometrical parameters, it have the ability to Categorize the given fish into its cluster and Categorize the clustered fish into poison or non-poison fish, and categorizes the nonpoison fish into its family . Both classification and recognition are based on combination between robust feature selection, image segmentation and geometrical parameter techniques.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Pattern Recognition in Control Chart Using Neural Network based on a New Statistical Feature

Today for the expedition of the identification and timely correction of process deviations, it is necessary to use advanced techniques to minimize the costs of production of defective products. In this way control charts as one of the important tools for the statistical process control in combination with modern tools such as artificial neural networks have been used. The artificial neural netw...

متن کامل

An Automated MR Image Segmentation System Using Multi-layer Perceptron Neural Network

Background: Brain tissue segmentation for delineation of 3D anatomical structures from magnetic resonance (MR) images can be used for neuro-degenerative disorders, characterizing morphological differences between subjects based on volumetric analysis of gray matter (GM), white matter (WM) and cerebrospinal fluid (CSF), but only if the obtained segmentation results are correct. Due to image arti...

متن کامل

Identification of selected monogeneans using image processing, artificial neural network and K-nearest neighbor

Abstract Over the last two decades, improvements in developing computational tools made significant contributions to the classification of biological specimens` images to their correspondence species. These days, identification of biological species is much easier for taxonomist and even non-taxonomists due to the development of automated computer techniques and systems.  In this study, we d...

متن کامل

Steel Consumption Forecasting Using Nonlinear Pattern Recognition Model Based on Self-Organizing Maps

Steel consumption is a critical factor affecting pricing decisions and a key element to achieve sustainable industrial development. Forecasting future trends of steel consumption based on analysis of nonlinear patterns using artificial intelligence (AI) techniques is the main purpose of this paper. Because there are several features affecting target variable which make the analysis of relations...

متن کامل

Design, Development and Evaluation of an Orange Sorter Based on Machine Vision and Artificial Neural Network Techniques

ABSTRACT- The high production of orange fruit in Iran calls for quality sorting of this product as a requirement for entering global markets. This study was devoted to the development of an automatic fruit sorter based on size. The hardware consisted of two units. An image acquisition apparatus equipped with a camera, a robotic arm and controller circuits. The second unit consisted of a robotic...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • CoRR

دوره abs/0912.0986  شماره 

صفحات  -

تاریخ انتشار 2009